企业信息

    深圳市住建工程检测有限公司

  • 9
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2014
  • 公司地址: 广东省 深圳市 龙岗区平湖新木恒昌荣工业园C栋
  • 姓名: 严子棋
  • 认证: 手机已认证 身份证未认证 微信已绑定

    阳江房屋建筑结构安全检测参与者单位 房屋鉴定单位

  • 所属行业:房地产 房产开发
  • 发布日期:2019-12-09
  • 阅读量:190
  • 价格:10000.00 元/平米 起
  • 产品规格:不限
  • 产品数量:9999.00 平米
  • 包装说明:不限
  • 发货地址:广东深圳  
  • 关键词:阳江房屋建筑结构安全检测**单位

    阳江房屋建筑结构安全检测参与者单位 房屋鉴定单位详细内容

    在建筑工程施工中较常用的地基加固方法就是注浆加固法,运用此方法可以充分改善持力层受力状态和荷载传递性能,使地基得到有效加固,从而防止或减少渗透或不均匀沉降。本文通过分析注浆加固的概念及分类,以某工程为例针对注浆加固技术在建筑地基处理中的应用问题进行探讨,以期通过本文的阐述节约工程资金、提高工程效率,不断提升建筑地基工程质量。
    1 注浆加固的概念及分类
    注浆技术是通过注浆管把具有流动性、填充性、胶凝性的一种或几种浆液材料,按一定的配比注入地基土中,浆液以充填、渗透和挤密等方式挤走土粒间的水分和空气,使浆液与原来松散的土粒胶结成整体,从而提高原来土体的强度。
    注浆加固技术适用于砂、粉土、填土、裂隙岩石各种浆材的适用范围。注浆加固根据注浆方式分为几下几种类型:
    (1)渗透注浆。注浆压力小,土体的颗粒大,用于渗透系数大于10-4cm/s的砂性土体注浆。浆液在土体中渗透并凝结而加固土体。
    (2)劈裂注浆。用于渗透系数小于10-4cm/s的土体。由于土体中孔隙小,浆液流动困难,需用注浆的压力将土体劈裂,使浆液沿裂隙渗入土中。软土体较易劈裂,但强度较高的土体不易劈裂,这样加固后的土体中形成了由浆液凝固成的等岩土体的加固及防渗。
    注浆是采用液压、气压和电渗方法将浆液注入地基中,将其凝固成“结石体”,从而起到防渗和增加其强度等功能。浆液材料可分为粒状浆材和化学浆材两大类。粒状浆材包括纯水泥、水泥粉煤灰、水泥砂粘土、水泥粘土等;化学浆材包括水玻璃、碱液等无机浆材和环氧树脂、甲基丙烯酸酯、聚氨酯、丙烯酰胺、木质素等**浆材。
    (3)压密注浆。利用压力下的较浓浆液使土体压密,在注浆部位形成球形的“浆泡”,离浆泡面0.3~2m内的土体都受到明显压密而增强,浆泡的强度则更高,浆泡的直径可达4m。压密注浆常用于中砂地基;粘性土若具有适宜的排水条件宜可选用。
    (4)电渗注浆(电化学注浆)。用于粘性土体,在粘性土体中插入电极后就会在土体中产生电渗现象,使通电区内的土体中的水分流向阴极,从而在土体中给注入的浆液让出通道;若注入硅酸盐浆液,就能在通道上形成硅胶,并与土粒胶结成加固体。
    2 注浆加固技术在建筑物地基处理中的工程实例
    2.1 工程概况
    项目为某车站综合楼,拟采用钻孔灌注桩,为66根1000~1200mm钻孔灌注桩。桩端持力层为页岩层,工程桩静载检测结果表明,部分单桩竖向极限承载力达不到设计要求,需要对该地基进行加固处理。施工前,在建筑物周围分别布置了6个勘探点(探井),探井在掘进过程中有大量的水渗入,致使少数探井没有达到预想的深度。
    根据勘探资料显示,该勘察区地层主要由素填土、角砾及强风化页岩组成,局部有粉土及中砂夹层。各地层情况自上而下为:**层主要为素填土,上部主要由素土充填,包括大量的煤屑、砖块以及少量的炉渣、垃圾等杂物,呈松散状态,下部填土孔隙较大,主要由层厚为1.5~5.2m的大量块石、片石及角砾充填;二层层厚为0.1~2.4m的棱角状角砾与深灰色冲积再生土,粒径一般10mm左右,大者可达30mm,稍密状态,该层只有在个别探井中未见,在其他数个探井中都未被发现;三层层厚为0.3~0.8m的深灰色页岩与强风化岩石,含水量较高,节理发育,见水后较细腻,个别已揭露探井的勘探深度内均未被发现。
    2.2 压力注浆方案的选择
    进行注浆施工首先要解决的问题是注浆方案的选择,注浆方案选择一般应遵循以下原则:
    (1)一般来说,应采用水泥浆或水泥粉煤灰浆液来对伏软弱地基进行加固。
    (2)如有硬壳存在软弱土层的上部,要将此软弱土层作为封压层;当无这种硬壳或没发育时,可在地表做一厚约为0.5m的粘土垫层作为封压层,或在地基碾实后形成封压层。
    (3)如软弱土层上部有较多的砂砾层,应自上而下分段式的注浆,如软弱土层上部砂砾层较少或没有时,应自下而上分段式的注浆。
    本工程选择上述*(3)种由下至上注浆方式进行。
    2.3 地基加固具体方案
    2.3.1 方案概述。根据地质资料及设计要求,对该建筑整体地基范围内进行自下而上的分段注浆加固处理。采用注浆花管方法对地基土进行加固处理,用长度为1.0m的注浆花管,钻孔深入基岩中自下向上的分段注浆。
    2.3.2 注浆参数选用。注浆压力,注浆压力应通过现场实验来确定,综合考虑覆盖土压、浆液种类、地质条件等因素的影响。参照砂砾石土地基注浆工程经验,建议此地段注浆压力选用0.4~1.0MPa。
    注浆顺序。注浆顺序应按跳孔间隔注浆方式进行,采用先外围后内部的注浆施工方法。
    浆液参数。注浆材料为纯水泥浆,水灰比为1:1,水泥为P.0,32.5普通硅酸盐水泥。
    注浆量。在一般情况下,理论上注入的耗浆量,应填充到颗粒之间的孔隙中,或沿层理或裂隙劈裂式注入。每孔(段)浆液注入量可用下式计算:
    某工程发现裂纹近二年,后墙基础下沉,墙体开裂,向外倾斜。今年开始下沉加剧,墙体裂缝加大,并贯通,地面由于基础下沉所至向上抬起、起鼓。流水沟变形开裂渗水,使基础下沉继续发展,该厂房现已成危房。
    为了继续使用,业主决定加固处理,加固方案为:⑴对基础置换C20砼;⑵增设两道构造圈梁,圈梁的砼强度等级为C25;⑶对开裂的墙体进行处理;⑷起鼓地面凿平,重新浇注C20砼,上铺地面砖。
    二、施工部署
    (一)总体安排。由于该泵房不能因加固停止运转,这给工程加固带来很大困难。工程加固项目有基础加固、增设两道构造圈梁、开裂墙体的处理、室内地面处理等,以上工序之间不能流水作业穿插施工,所以人员窝工现象比较严重。根据工程现状,此工程为危房,为保证施工安全,施工前首先对倾斜墙体加固。根据业主的加固方案,基础下的地基土分次清除,分段置换C20膨胀砼,施工时很难保证工序的连续性。本工程加固前首先将基础两侧的基土挖开,确定基础结构形式和埋深,检验地基土质情况,分析裂缝的原因,有针对性的进行处理。
    (二)施工顺序。墙体加固→土方开挖→基底分段挖土→基底素土夯实→分段置换C20膨胀砼→外墙圈梁施工→开裂墙体处理→室内地面拆除→室内地面施工→水沟施工
    三、加固方法
    (一)墙体加固。为了确保施工安全,不发生安全事故,首先对倾斜墙体加固,加固部位为裂缝墙体的+8.000和+4.000两道裂缝分别加固。裂缝墙体采用钢模板、钢支撑加固,用钢脚手一端**在钢模上,另一端支撑在地上,地上设木桩,钢支撑下设垫板,钢支撑间距为1000mm。
    (二)土方工程。土方采用人工开挖,首先把后墙基础两侧挖开,分两次挖土,**次在厂房外侧挖土,宽度挖至基础中心,深度为500mm,然后浇筑砼。*二次在厂房内侧挖另一部分土方。
    (三)原土夯实。由于新开挖基槽上部座落着原基础,基槽深为500,原土夯实待土方开挖后根据实际情况确定。
    (四)基础加固。1.基础模板工程。基础加固部分模板采用钢模,支模时沿基础边线立侧模板,用U型卡扣连接钢模,用Φ48钢筋加固,50×60木方做斜撑,斜撑一端**在模板上,另一端**在基坑壁上,并加设木垫板,将侧模固定牢固。2.砼施工。(1)砼强度等级为C20,在浇注砼前,原基础底面用水冲洗并将模板内的垃圾清扫干净,将模板缝隙堵严。(2)砼膨胀剂按掺量掺入,砼浇注时,先浇注原基础底面部分砼,使新浇砼与原基础充分接触。3.土方回填。回填土采用素土回填,回填时选择良好的土质,不得含有杂质、**物等。土方回填采用分层回填、并夯实,每层虚铺厚度不**过250mm,并分层进行环刀取样。
    (五)圈梁施工。根据动力厂厂房基础下沉加固方案,圈梁加固前在外墙凿200×180×200孔洞,间距为1500mm,洞凿开后将垃圾清扫干净,用水冲洗,然后安装钢筋。模板采用钢模、木支撑,**道圈梁模板支撑支设在地面上,地面要夯实,支撑下加垫木,*二道圈梁模板支撑支设在**道圈梁上,上下支撑通线。砼强度等级为C25,砼必须连续振捣,振捣密实后的砼必须用刮杠刮平,用木抹子将其表面搓揉平整。砼浇筑完毕后,浇水养护。
    (六)开裂墙体处理。将墙体开裂处采用分段处理,分段长度按1m考虑,每段墙体开裂处二侧凿出V型槽,宽度为2cm,深度为3cm,然后用1�2水泥砂浆抹平,待砂浆强度达到30%时,在抹平V型槽上方用压浆泵浇灌1:2水泥砂浆,将墙内的裂缝灌实。
    (七)室内地面处理。将起鼓的地面和水沟凿开,将地面用蛙式打夯机夯实,然后先绑扎水沟钢筋,钢筋采用绑扎搭接,钢筋绑扎后支设水沟模板,地面建议配Φ8@150双向钢筋网,水沟、地面砼同时施工,浇灌150厚C20砼。砼施工完毕后进行养护,上铺面开始铺地砖。
    四、质量保证措施
    (一)基础混凝土浇筑前先进行验收,检查基础高度、几何尺寸是否满足要求
    (二)混凝土浇筑前检查模板的牢固程度、几何尺寸、轴线及标高是否满足要求,合格后方可浇筑砼。
    五、**措施
    (一)“安全**、预防为主”为本工程的安全指导思想。所有作业人员进入现场前,应进行“三级”安全教育和必要的安全培训学习,特殊工种要持证上岗,严禁违章、无证操作人员擅自操作使用电器、机械设备。
    (二)作业人员进入现场必须戴好安全帽,凡离地面2米以上的操作均称为登高作业,高空作业人员要系好“安全带”、穿防滑鞋。
    结语:该工程加固已有两年多,效果很好,没有出现裂缝和下沉等现象。
    阳江房屋建筑结构安全检测单位
    某别墅及酒店位于边坡边缘,下卧基岩节理、裂隙发育,完整程度较破碎,按不利因素考虑,该场地属对建筑抗震不利地段。部分别墅为陡坡及缓坡别墅,那么坡地基础如何设计,坡地如何加固,本人根据某坡地别墅工程分析如下:
    该项目为山区地基设计,应考虑下列因素:
    (1)建设场区内,在自然条件下,有无滑坡现象,有无断层破碎带。
    (2)施工过程中,因挖方、填土、堆载和卸载等对山坡稳定性的影响。
    (3)建筑地基的不均匀性。
    (4)岩溶、土洞的发育程度。
    (5)出现崩塌、泥石流等不良地质现象的可能性。
    1 自身结构稳定
    建造在斜坡上的建筑物, 未采取切实有效的结构措施。应分析原因,如:坡地上是建筑,受场地约束条件的限制,一般不具备双向均匀对称的条件,在地震作用或风等水平荷载作用下,建筑物将产生很大的扭转,属于抗震不规则结构。
    设计建议:有条件时,应采取措施营造减小坡地建筑扭转的小环境,就是将通过场地的局部地坪平整,使建筑物坐落在四周同一标高上的场地上,房屋临近坡**的一侧,设置*支挡结构。
    2 地基处理及基础设计
    由于陡坡、缓坡别墅拟建场地地势较为陡峭,位于山坡中,可能存在山体稳定性的安全问题,另外工程建设需要开挖部分山体,也存在安全问题。根据**《地质灾害防治条例》的有关规定和《岩土工程勘察规范》应对场地山体稳定性进行专门地质灾害评估,对山体开挖、工程施工及工程竣工后场地可能发生地质灾害评估。根据场地稳定性评价,本区域地质构造无活动断层,通过从地质构造及地震活动历史等因素分析,本场地为相对稳定区。适宜作为建筑场地,但场地位于山前地带,地质条件复杂,在暴风雨等较端天气条件下,可能存在滑坡和泥石流等地质灾害隐患。从区域地质构造方面分析,本场地为相对稳定区,但场地位于丘岗区域,周围山坡坡度较大,对建筑物可能产生不利影响,应对山坡的稳定性进行专门的勘察评价和治理。该项目勘察揭示的地下水类型主要为孔隙潜水和裂隙水, 其中孔隙潜水主要赋存于局部厚填土孔隙中。裂隙水主要赋存于底部基岩裂隙中,赋水性不均,各向异性。近3~5 年较高地下水位埋深可按场地整平后地表下1.0 m 考虑。场地环境类型为Ⅱ类,场地内地下水、土及地表水对混凝土结构具微腐蚀,对钢筋混凝土结构中的钢筋具微腐蚀。
    2.1 对山地勘察的基本要求
    结构设计前应检查勘察是否满足结构设计的基本要求,大致如下:
    (1)对持力层的判断
    (2)对持力层地基承载力的判断
    (3)对地基变形的判断
    根据规范要求,对工程是否进行地基变形计算,地基各土层参数是否齐全。
    (4)对地下水的判断
    应查明地下水对混凝土、钢筋及结构的腐蚀。确定对地下水位、抗浮设计水位需求。
    (5)建筑场地的安全性
    查验地质灾害的危险性评价。坡地建筑主要包括岩溶、土洞、塌陷、滑坡、崩塌、泥石流、地面沉降、地裂缝、活动断裂、斜坡变形等,对于山坡、湖岸等特别注意存在的地质灾害。
    2.2 基础设计
    根据地质报告,均可考虑采用浅基础,分别以浅部③层粉质黏土、黏土为浅基础持力层,局部基岩浅埋地段以风化岩为浅基础持力层。局部填土较厚地段,可考虑作换土垫层处理,以处理后的复合地基作为拟建建筑浅基础持力层。当建筑物位于不同持力层时, 应进行深宽调整, 加强整体刚度,以防不均匀沉降;当建筑物基础位于土岩结合部位时,应在基岩地基处增设褥垫层,同时加大土质地基处基础宽度。场地北侧、西侧以岩质边坡为主,地面高程约27 m~62 m,相对高差约35 m。坡度一般10°~30°,下卧岩层节理、裂隙发育, 风化强烈,加之有地下水活动,对边坡稳定不利。另场地各建筑呈阶梯状整平、分布,设计时,应考虑对开挖形成的边坡进行支护,防止边坡失稳。边坡设计时应根据不同地质条件确定挡墙形式,并用适宜的方式护坡。图1 为陡坡别墅基础图。
    图1 陡坡别墅基础图
    本身基础设计承载力的控制要求满足《地基规范》*5.2.3 条,地基承载力特征值可由载荷试验或原位测试结合工程实践经验综合确定。而抗震结构的地基承载力验算,根据《抗震规范》*4.2.2 条规定,**地基基础抗震验算时,应采用地震作用效应的标准组合, 且地基抗震承载力应取地基承载力特征值乘以地基承载力调整系数计算。基础底面压力应符合下式要求: 当轴心荷载作用时: p≤faE当偏心荷载作用时: pmax≤1.2fAe。另外基础底面与地基土之间零应力区面积及基础偏心距要求, 《抗震规范》*4.2.4 条,抗震设计时基础, 还需满足基础底面与地基土之间零应力区面积的特殊要求:(1)高宽比H/B>4 的高层建筑,在地震作用下基础底面不宜出现零应力区,对矩形平面的基础,可表达为: Ee≤b/6; (2)其他建筑,基础底面与地基土之间零应力区面积不应**过基础地面积15%, 可表达为: Ee≤1.3b/6。另外坡地地基变形时, 传至基础底面上的荷载应按正常使用极限状态下荷载效应的准*组合, 不应计入风荷载和地震作用。相应的限值应为地基变形允许值。
    随着社会经济的快速发展和城市化建设进程的不断加快,高层建筑项目的建设数量越来越多,尤其是CFG桩的出现,为高层建筑工程建设事业的发展带来了新的活力。CFG桩又称水泥粉煤灰碎石桩,是在素混凝土桩基工艺上发展起来的新型桩体,它与桩间土体及褥垫层共同作用,组成CFG桩复合地基,在地基加固中效果十分明显。
    1 工程概况
    某高层建筑工程,根据勘察资料,该工程场地地层自上而下依次为:
    ①粉质粘土(Q3al+pl):灰黄、褐黄色,稍湿,可塑,Es=6.0MPa,fk=17
    ②粉质粘土(Q3al+pl):褐黄色,湿,可塑,Es=5.2MPa,fk=100kPa,层厚2.20~0.80m。
    ③粉质粘土(Q3al+pl):灰黄色,湿,可塑,Es=6.1MPa,fk=130kPa,层厚6.20~5.68m。
    ④粉质粘土(Q3al+pl):灰黄、褐黄色,湿,硬可塑,Es=8.7MPa,fk=210kPa,层厚5.20~4.20m。
    ⑤粉质粘土(Q2al+pl):黄褐色,湿,可塑,Es=8.1MPa,fk=190kPa,层厚4.30~1.50m。
    ⑥粉质粘土(Q2al+pl):棕黄色,湿,硬塑,Es=12.7MPa,fk=240kPa,层厚12.50~8.10m。
    ⑦粉质粘土(Q2al+pl):棕色,湿,硬塑,Es=13.9MPa,fk=250kPa,层厚25.70~25.70m。
    ⑧粘土(Q2al+pl):黄褐色,湿,硬塑,Es=14.1MPa,fk=280kPa,层厚11.70~11.70m。
    ⑨粘土(Q2al+pl):黄色,湿,硬塑,Es=14.8MPa,fk=300kPa,该层未揭穿。
    2 地基处理设计方案论证及选择
    根据场地的工程地质条件及水文地质条件,对该场地地基土多种地基处理方案从技术可行性、经济合理性、工程可靠性、当地的工程常用方法及经验和材料的来源、工期长短等影响效益的各种因素进行分析、比较和选择。
    2.1 方案一:钻孔灌注桩加固方案
    (1)选择桩型、桩材及桩长:根据试桩初步选择φ500mm钻孔灌注桩,混凝土水下灌注用C20,钢筋采用Ⅰ级。经查表得fc=10N/mm2,fcm=11N/mm2,ft=1.1N/mm2,钢筋fy=f′y=210N/mm2。初步选择*⑦层粉质粘土为持力层不得小于1m。初步选择基础底面埋深4.5m,则该工程的较小桩长为20.5m。
    (2)确定单桩竖向承载力设计值:
    ①根据桩身材料强度确定单桩竖向承载力设计值,按式Rc=φ(fcA+f′yAs)取φ=1,fc按0.8折减。配筋率初步按0.5%计算,则:
    Rc=φ(fcA+f′yAs)=0.8×20.5×0.52×π/4+210×0.005×0.52×π/4=3.21+0.206=3.424(MN)=3424(kN)
    ②根据土的物理指标与承载力间的的经验关系确定单桩竖向极限承载力标准值,查《基础工程设计与施工》表4-31,4-32得qsk3=45kPa,qsk4=65kPa,qsk5=55kPa,qsk6=80kPa,qsk7=85kPa,qpk=1200kPa。按式:Quk=Qsk+Qpk=π×0.5(45×3.3+65×3.7+55×3.4+80×8.9+85×1.2)+1200×0.52×π/4=2182.3+235=2417(kN)
    由此求R,即Rk=Quk/2=1208kN,R=966kN。
    (3)确定桩的数量和平面布置:初步确定该基础的底面积为74×2.83×2+22×2.83×5=730.14(m2),基础和土自重G=730.14×4.5×20=65712(kN),则桩数按式:
    n=μ(F+G)/R
    式中:N—桩数;
    μ—系数,当桩基为轴心受压时μ=1;当偏心受压时μ=1.1~1.2;
    F—作用于桩基上的竖向荷载设计值,kN;
    G—桩基承台或条基和其上的土受到的重力,kN;
    R—单桩竖向承载力设计值,kN。
    n=μ(F+G)/R=1.1(430×730.14+65712)/966=432.3
    取n=433根。
    基础布桩采用三角形或矩形布桩。
    2.2 方案二:CFG桩复合地基加固方案
    CFG桩具有较高的桩身强度,能承受较大份额的上部荷载,以往的加固经验表明,CFG桩加固后的复合地基承载力较加固前可提高2~3倍甚至更高,该场地附近以前工程现场的CFG桩静载试验结果也表明,复合地基承载力可达250~300kPa,单桩承载力亦可达180~200kN,可以满足设计要求。由于CFG桩本身具有良好的排水作用,可使施工产生的**孔隙水压力沿桩体排出。既该方案从技术的可行性、当地工程常用的方法及经验和工程的可靠性都是满足设计要求的。CFG桩复合地基的初步设计:
    (1)设计该桩的桩径为:d=400mm;地基承载力特征值fsp,k≥373kPa。
    (2)面积置换率m:依据《建筑地基处理技术规范》(JGJ79-2002)中:
    fspk=m(Ra/Ap)+β(1-m) fsk
    式中:fspk—复合地基承载力特征值,取值373kPa;
    fsk—桩间土承载力特征值,取值130kPa;
    m—面积置换率;
    β—桩间土承载力折减系数,取0.75;
    Ra—单桩承载力特征值,kN;

    阳江房屋建筑结构安全检测单位

    -/gjdaec/-

    http://denhongwa0202.cn.b2b168.com